Glycosylation & Protein Function
Glycan sequences cannot be described by a simple linear one-letter code as each pair of monosaccharides can be linked in several ways and branched structures can be formed. Few of the bioinformatics algorithms developed for genomics or proteomics can be directly adapted for glycomics. The development of algorithms, which allow a rapid, automatic interpretation of mass spectra to identify glycan structures, is currently the most active field of research. The development and use of informatics tools and databases for glycobiology and glycomics research has increased considerably in recent years.
- Glycoprotein diversity
- Glycan linkage
- Chemical glycosylation
- Proteoglycans
- N-linked glycosylation
Related Conference of Glycosylation & Protein Function
October 13-14, 2025
17th International Conference on Tissue Science and Regenerative Medicine
Rome, Italy
Glycosylation & Protein Function Conference Speakers
Recommended Sessions
- Biochemistry and Biophysics
- Cancer Biology
- Cancer Science
- Cardiac Cell Biology
- Glycans in Diseases & Therapeutics
- Glycobiology in Diabetes and Stroke
- Glycochemistry
- Glycoconjugates & Glycoscience
- Glycoengineering
- Glycoimmunology
- Glycosylation & Protein Function
- Neurobiology
- NMR and Mass Spectrometry
- Proteomics
- Stem Cell Therapy
- Structural Biology
Related Journals
Are you interested in
- 3-D Structure Determination - Structural Biology 2025 (Germany)
- 3D Structure Determination - Structural Biology-2025 (France)
- Advanced Techniques in Structural Biology - Structural Biology-2025 (France)
- Advancements in structural Biology - Structural Biology 2025 (Germany)
- AI & Computational Structural Biology - Structural Biology-2025 (France)
- Biochemistry and Biophysics - Structural Biology-2025 (France)
- Biochemistry and Biophysics - Structural Biology 2025 (Germany)
- Computational Approach in Structural Biology - Structural Biology-2025 (France)
- Computational Approach in Structural Biology - Structural Biology 2025 (Germany)
- Drug Designing and Biomarkers - Structural Biology-2025 (France)
- Drug Designing and Biomarkers - Structural Biology 2025 (Germany)
- Frontiers in Structural Biology - Structural Biology 2025 (Germany)
- Gene Regulation and Cell Signaling - Structural Biology 2025 (Germany)
- Hybrid Approaches for Structure Prediction - Structural Biology-2025 (France)
- Hybrid Approaches in Structure Prediction - Structural Biology 2025 (Germany)
- Membrane Proteins and Receptors - Structural Biology-2025 (France)
- Molecular Biology - Structural Biology 2025 (Germany)
- Molecular Biology Techniques - Structural Biology 2025 (Germany)
- Molecular Modelling and Dynamics - Structural Biology-2025 (France)
- Molecular Modelling and Dynamics - Structural Biology 2025 (Germany)
- Proteomics and Genomics - Structural Biology 2025 (Germany)
- Proteomics and Genomics - Structural Biology-2025 (France)
- Sequencing Analysis - Structural Biology 2025 (Germany)
- Structural Bioinformatics - Structural Biology 2025 (Germany)
- Structural Bioinformatics and Computational Biology - Structural Biology-2025 (France)
- Structural Biology - Structural Biology 2025 (Germany)
- Structural Biology Databases - Structural Biology 2025 (Germany)
- Structural Biology in Cancer Research - Structural Biology-2025 (France)
- Structural Biology in Cancer Research - Structural Biology 2025 (Germany)
- Structural Enzymology - Structural Biology 2025 (Germany)
- Structural Virology - Structural Biology-2025 (France)
- Structural Virology and Infectious Diseases - Structural Biology-2025 (France)
- Structure-Based Drug Discovery - Structural Biology-2025 (France)
- Structure-Based Solutions to Global Health Challenges - Structural Biology-2025 (France)
- Structure-Function Relationships - Structural Biology-2025 (France)
- The Structural Basis of Disease - Structural Biology-2025 (France)